Finding the double sunsets: close binaries and spectroscopic surveys

IAC, La Laguna May 2, 2018

Carles Badenes University of Pittsburgh / PITT PACC

Research Group @ U Pitt:

- Graduate Students: Sumit Sarbadhicary, Héctor Martínez-Rodríguez, Christine Mazzola.
- Postdocs: Brett Andrews, Lluís Galbany

Main Collaborators (on this research):

- Todd Thompson (OSU), Kevin Covey (UWW), Peter Freeman (CMU/Statistics), Matthew Walker (CMU/Physics), Maxwell Moe (UofA).
- The APOGEE RVvar group: Nick Troup (UVa), David Nidever (NOAO), Nathan De Lee (NKU), and many others.
- GAIA, WEAVE: Teresa Antoja (UB), Sara Lucatello (Padova).

Funding:

The twin suns of Tatooine slowly disappear behind a distant dune range...

Star Wars. George Lucas, 1977.

Carles Badenes IAC 2/5/18

Outline

• Introduction: Close Binaries, Why do we care and what are we looking for?

• **Data:** Radial Velocities from large spectroscopic surveys.

• **Results:** WD binaries. Multiplicity statistics vs. stellar evolution and metallicity in SDSS/APOGEE.

Conclusions: Implications.
 Future directions: GAIA, WEAVE.

Carles Badenes IAC 2/5/18

Outline

Introduction: Close Binaries,
 Why do we care and what are we looking for?

- **Data:** Radial Velocities from large spectroscopic surveys.
- **Results:** WD binaries. Multiplicity statistics vs. stellar evolution and metallicity in SDSS/APOGEE.
- **Conclusions:** Implications. Future directions: GAIA, WEAVE.

Close binaries (will interact) ⇒ deviations
 from single stellar evolution.

- Unresolved systems ⇒
 healthy skepticism.
- Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...
- Influence planet habitability

Close binaries (will interact) ⇒ deviations
 from single stellar evolution.

- Unresolved systems ⇒
 healthy skepticism.
- Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...
- Influence planet habitability

• Close binaries (will interact) ⇒ deviations from single stellar evolution.

- Unresolved systems ⇒ healthy skepticism.
- Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...

Mira A+B by ALMA [Vlemmings+ 15]

• Influence planet habitability

Carles Badenes IAC 2/5/18

• Close binaries (will interact) ⇒ deviations from single stellar evolution.

- Unresolved systems ⇒
 healthy skepticism.
- Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...
- Influence planet habitability

Close binaries (will interact) ⇒ deviations
 from single stellar evolution.

- Unresolved systems ⇒
 healthy skepticism.
- Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...
- Influence planet habitability

 Close binaries (will interact) ⇒ deviations
 from single stellar evolution.

 Unresolved systems ⇒ healthy skepticism.

• Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...

 Influence planet habitability

Carles Badenes IAC 2/5/18

Carles Badenes IAC 2/5/18

Close binaries (will interact) ⇒ deviations
 from single stellar evolution.

 Unresolved systems ⇒ healthy skepticism.

• Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...

 Influence planet habitability

SN 1987A

V838 Mon

SS 433

RS Oph

Close binaries (will interact) ⇒ deviations from single stellar evolution.

Unresolved systems ⇒ healthy skepticism.

- Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...
- Influence planet habitability

Wikipedia

Carles Badenes IAC 2/5/18

Close binaries (will interact) ⇒ deviations from single stellar evolution.

Unresolved systems ⇒ healthy skepticism.

- Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...
- Influence planet habitability

Wikipedia

Close binaries (will interact) ⇒ deviations
 from single stellar evolution.

- Unresolved systems ⇒
 healthy skepticism.
- Stellar GW sources (kilonovae!), Type Ia SNe, (many) CC SNe, Novae, exotic transients, AM CVn stars, HMXBs, LMXBs, CVs...
- Influence planet habitability

Circumbinary Habitability [Jamie+ 14]

- Stellar Multiplicity (Sun-like MS stars, D<25 pc) [Raghavan+ 10, Duchene & Kraus 13, Moe & DiStefano 17 (MD17)]:
 - Multiplicity fraction (f_m): dominated by M₁.
 - Period (P): ~lognormal.

mult;q>0.

- Mass Ratio (q): ~flat.
- Eccentricity (e): tidal circularization, ~uniform.
- Not independent of each other!!!! [Sana+ 12, MD17].

Primary Mass M_1 (M_{\odot})

Carles Badenes IAC 2/5/18

MD 17

• Stellar Multiplicity (Sun-like MS stars, D<25 pc) [Raghavan+ 10, Duchene & Kraus 13, Moe & DiStefano 17 (MD17)]: (

- Multiplicity fraction (f_m): dominated by M₁.
- Period (P): ~lognormal.
- Mass Ratio (q): ~flat.
- Eccentricity (e): tidal circularization, ~uniform.
- Not independent of each other!!!! [Sana+ 12, MD17].

• Stellar Multiplicity (Sun-like MS stars, D<25 pc) [Raghavan+ 10, Duchene & Kraus 13, Moe & DiStefano 17 (MD17)]:

- Multiplicity fraction (f_m): dominated by M₁.
- Period (P): ~lognormal.
- Mass Ratio (q): ~flat.
- Eccentricity (e): tidal circularization, ~uniform.
- Not independent of each other!!!! [Sana+ 12, MD17].

Shporer+ 16

MD 17

• Stellar Multiplicity (Sun-like MS stars, D<25 pc) [Raghavan+ 10, Duchene & Kraus 13, Moe & DiStefano 17 (MD17)]:

- Multiplicity fraction (f_m): dominated by M₁.
- Period (P): ~lognormal.
- Mass Ratio (q): ~flat.
- Eccentricity (e): tidal circularization, ~uniform.
- Not independent of each other!!!! [Sana+ 12, MD17].

• Critical P for RLOF (q=1):

P_{crit} = 0.76(R³/(GM))^{1/2}

- Core H exhaustion $\Rightarrow R\uparrow$ (RGB) $\Rightarrow P_{crit}\uparrow$
- log P_{crit} : -0.35 (MS) \Rightarrow 2.9 (TRGB) \Rightarrow 3.4 (TAGB).
- Case A (MS), B (RGB) and C (AGB) mass transfer.

 RGB (Case B) ⇒ Unstable mass transfer [Pavloskii & Ivanova
 15] ⇒ Common Envelope ⇒ merger or short P system.

Roche Potential [Wikipedia]

Carles Badenes IAC 2/5/18

Carles Badenes IAC 2/5/18

• Critical P for RLOF (q=1):

P_{crit} = 0.76(R³/(GM))^{1/2}

- Core H exhaustion $\Rightarrow R\uparrow$ (RGB) $\Rightarrow P_{crit}\uparrow$
- log P_{crit} : -0.35 (MS) \Rightarrow 2.9 (TRGB) \Rightarrow 3.4 (TAGB).
- Case A (MS), B (RGB) and C (AGB) mass transfer.
- RGB (Case B) ⇒ Unstable mass transfer [Pavloskii & Ivanova
 15] ⇒ Common Envelope ⇒ merger or short P system.

Carles Badenes IAC 2/5/18

• Critical P for RLOF (q=1):

$P_{crit} = 0.76(R^3/(GM))^{1/2}$

- Core H exhaustion $\Rightarrow R\uparrow$ (RGB) $\Rightarrow P_{crit}\uparrow$
- log P_{crit} : -0.35 (MS) \Rightarrow 2.9 (TRGB) \Rightarrow 3.4 (TAGB).
- **Case A** (MS), **B** (RGB) and **C** (AGB) mass transfer.

 RGB (Case B) ⇒ Unstable mass transfer [Pavloskii & Ivanova
 15] ⇒ Common Envelope ⇒ merger or short P system.

• Critical P for RLOF (q=1):

P_{crit} = 0.76(R³/(GM))^{1/2}

- Core H exhaustion $\Rightarrow R\uparrow$ (RGB) $\Rightarrow P_{crit}\uparrow$
- log P_{crit} : -0.35 (MS) \Rightarrow 2.9 (TRGB) \Rightarrow 3.4 (TAGB).
- **Case A** (MS), **B** (RGB) and **C** (AGB) mass transfer.

 RGB (Case B) ⇒ Unstable mass transfer [Pavloskii & Ivanova
 15] ⇒ Common Envelope ⇒ merger or short P system. $\log g = \log(M/R^2)$

Carles Badenes IAC 2/5/18

• Critical P for RLOF (q=1):

P_{crit} = 0.76(R³/(GM))^{1/2}

- Core H exhaustion $\Rightarrow R\uparrow$ (RGB) $\Rightarrow P_{crit}\uparrow$
- log P_{crit} : -0.35 (MS) \Rightarrow 2.9 (TRGB) \Rightarrow 3.4 (TAGB).
- **Case A** (MS), **B** (RGB) and **C** (AGB) mass transfer.

 RGB (Case B) ⇒ Unstable mass transfer [Pavloskii & Ivanova
 15] ⇒ Common Envelope ⇒ merger or short P system.

Ohlmann+ 15

Carles Badenes IAC 2/5/18

• Critical P for RLOF (q=1):

 $P_{crit} = 0.76(R^3/(GM))^{1/2}$

- Core H exhaustion $\Rightarrow R\uparrow$ (RGB) $\Rightarrow P_{crit}\uparrow$
- log P_{crit} : -0.35 (MS) \Rightarrow 2.9 (TRGB) \Rightarrow 3.4 (TAGB).
- **Case A** (MS), **B** (RGB) and **C** (AGB) mass transfer.
- RGB (Case B) ⇒ Unstable mass transfer [Pavloskii & Ivanova
 15] ⇒ Common Envelope ⇒ merger or short P system.

V838 Mon [Bond+ 03]

• Multiplicity Statistics only known accurately at all P in the MS and in the Solar Neighborhood [Duchene & Kraus 13].

• Studies in stellar clusters (small samples) [Carney+ 03; Geller+ 08; Matijevic+ 11; Sana+ 12; Merle+ 17], but no panoramic view of the interplay between multiplicity, stellar evolution, and age/metallicity in the field. Open questions:

- Are our ideas about RLOF basically correct?
- Stellar multiplicity vs. environment: age? metallicity? ⇔ SF theory [Machida+ 09, Bate 14], dynamics [Kroupa & Petr-Gotzens 11].
- Rate of CE events in the MW? Rate of stellar mergers?
 Formation rate of short P systems? Can we help constrain BPS models for SNe, GW sources, etc.?

Carles Badenes IAC 2/5/18

Outline

• Introduction: Close Binaries, Why do we care and what are we looking for?

- **Data:** Radial Velocities from large spectroscopic surveys.
- **Results:** WD binaries. Multiplicity statistics vs. stellar evolution and metallicity in SDSS/APOGEE.

• **Conclusions:** Implications. Future directions: GAIA, WEAVE.

RVs in Large Spectroscopic Surveys

Carles Badenes IAC 2/5/18

- **RVs**: most efficient
 probe of multiplicity for log
 P<4 ⇒ spectra.
- Large spectroscopic surveys: SDSS/SEGUE [Yanni+ 09], SDSS/APOGEE [Majewski+ 17], RAVE [Steinmetz+ 06], WEAVE [Dalton+ 14].
- Well characterized
 (pipelines) ⇒ stellar
 parameters.
- Caveat: Orbital fitting requires ~10 RVs, good phase sampling ⇒ not for most targets.

RVs in Large Spectroscopic Surveys

Carles Badenes IAC 2/5/18

- **RVs**: most efficient probe of multiplicity for log $P<4 \Rightarrow$ spectra.
- Large spectroscopic surveys: SDSS/SEGUE [Yanni+ 09], SDSS/APOGEE [Majewski+ 17], RAVE [Steinmetz+ 06], WEAVE [Dalton+ 14].
- Well characterized
 (pipelines) ⇒ stellar
 parameters.
- Caveat: Orbital fitting requires ~10 RVs, good phase sampling ⇒ not for most targets.

Badenes+ 09

Carles Badenes IAC 2/5/18

We don't need to fit the orbits to answer many of the open questions about stellar multiplicity!

RVs in Large Spectroscopic Surveys

Carles Badenes IAC 2/5/18

poorlydrawnlines.com

Carles Badenes IAC 2/5/18

Outline

• Introduction: Close Binaries, Why do we care and what are we looking for?

- **Data:** Radial Velocities from large spectroscopic surveys.
- **Results:** WD binaries. Multiplicity statistics vs. stellar evolution and metallicity in SDSS/APOGEE.

• **Conclusions:** Implications. Future directions: GAIA, WEAVE.

Interlude: WD Binaries

Sparsely sampled RV
 curves ⇔ WD binaries.

Pre-merger WDs ⇒
 P~hrs, RV~500 km/s
 [Badenes+ 09, Mullally+ 09].

• $\Delta RV_{max} = Max(RV_i) - Min(RV_i) \Rightarrow f_{bin}, P$ distribution \Rightarrow WD merger rate.

• Enough WD mergers to explain Type Ia SNe [Badenes & Maoz 12, Maoz+ 18]. LISA foreground!

WD binary 'caught' by SDSS [Badenes+ 09]

Sparsely sampled RV

Interlude: WD Binaries

curves \Leftrightarrow WD binaries.

Pre-merger WDs ⇒
 P~hrs, RV~500 km/s
 [Badenes+ 09, Mullally+ 09].

• $\Delta RV_{max} = Max(RV_i) - Min(RV_i) \Rightarrow f_{bin}, P$ distribution \Rightarrow WD merger rate.

• Enough WD mergers to explain Type Ia SNe [Badenes & Maoz 12, Maoz+ 18]. LISA foreground!

Interlude: WD Binaries

Sparsely sampled RV curves ⇔ WD binaries.

Pre-merger WDs ⇒
 P~hrs, RV~500 km/s
 [Badenes+ 09, Mullally+ 09].

• $\Delta RV_{max} = Max(RV_i) - Min(RV_i) \Rightarrow f_{bin}, P$ distribution \Rightarrow WD merger rate.

• Enough WD mergers to explain Type Ia SNe [Badenes & Maoz 12, Maoz+ 18]. LISA foreground!

[Maoz, Hallakoun & CB 18]

Interlude: WD Binaries

Sparsely sampled RV curves ⇔ WD binaries.

Pre-merger WDs ⇒
 P~hrs, RV~500 km/s
 [Badenes+ 09, Mullally+ 09].

• $\Delta RV_{max} = Max(RV_i) - Min(RV_i) \Rightarrow f_{bin}, P$ distribution \Rightarrow WD merger rate.

• Enough WD mergers to explain Type Ia SNe [Badenes & Maoz 12, Maoz+ 18]. LISA foreground!

[Blandford 15]

Carles Badenes IAC 2/5/18

APOGEE

 Galactic evolution: Multi-epoch IR
 spectra R~20,000,
 ~10⁵ stars, high S/N
 [Majewski+ 17].

• MS, RG and RC stars, M~1 M_{Sun}, most of MW disk [Zasowski+ 13].

• ASPCAP [Perez+ 16] \Rightarrow T_{eff}, log(g), [Fe/H], **RVs**. RC catalog [Bovy+ 14]. The Cannon [Ness+ 15,16].

SDSS DR 10

APOGEE

 Galactic evolution: Multi-epoch IR
 spectra R~20,000,
 ~10⁵ stars, high S/N
 [Majewski+ 17].

• MS, RG and RC stars, M~1 M_{Sun}, most of MW disk [Zasowski+ 13].

 ASPCAP [Perez+ 16] ⇒ T_{eff}, log(g),
 [Fe/H], RVs. RC catalog [Bovy+ 14].
 The Cannon [Ness+ 15,16].

Carles Badenes IAC 2/5/18

Majewski+ 17

APOGEE

 Galactic evolution: Multi-epoch IR spectra R~20,000, ~10⁵ stars, high S/N [Majewski+ 17].

• MS, RG and RC stars, M~1 M_{Sun}, most of MW disk [Zasowski+ 13].

• ASPCAP [Perez+ 16] \Rightarrow T_{eff}, log(g), [Fe/H], **RVs**. RC catalog [Bovy+ 14]. The Cannon [Ness+ 15,16].

z

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

Carles Badenes IAC 2/5/18

- Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]
- Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

Carles Badenes IAC 2/5/18

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

Carles Badenes IAC 2/5/18

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

Carles Badenes IAC 2/5/18

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

Carles Badenes IAC 2/5/18

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

 Clear trend of ΔRV_{max} with log(g): stellar multiplicity meets stellar evolution.

distributions

Carles Badenes IAC 2/5/18

Fraction of systems with ΔRV_{max}
 > 10 km/s.

• Clear descending trend, but contamination from RC at log(g)~2.8.

• Attrition of high ΔRV_{max} (short P) systems: 88% systems in the MS are gone in the RC.

Observational constraint on Case
 B mass transfer.

APOGEE: Models for ΔRV_{max}

Fraction of systems with ΔRV_{max}
 > 10 km/s.

• MC models work well in the RGB, but not at high log(g).

Support for lognormal P dist, truncated at P_{crit}.

• Best-fit MC model in the RGB has f_m=0.35. Caveats: log P < 3.3, simple models, WD+RGB [MD 17].

APOGEE: ΔRV_{max} vs. [Fe/H]

- APOGEE view of MW disk \Rightarrow [Fe/H].
- ΔRV_{max} distribution in [Fe/H] terciles: low ~ -0.5; high ~0.0.

APOGEE: ΔRV_{max} vs. [Fe/H]

APOGEE: ΔRV_{max} vs. [Fe/H]

- APOGEE view of MW disk \Rightarrow [Fe/H].
- ΔRV_{max} distribution
 in [Fe/H] terciles: low
 ~ -0.5; high ~0.0.
- ΔRV_{max} in low
 [Fe/H] clearly above
 high [Fe/H] in all
 non-RC samples.

Consistent with f_m
 a factor 2-3 higher
 at low [Fe/H] for
 close (log P < 3.3)
 binaries.

Carles Badenes IAC 2/5/18

Outline

• Introduction: Close Binaries, Why do we care and what are we looking for?

- **Data:** Radial Velocities from large spectroscopic surveys.
- **Results:** WD binaries. Multiplicity statistics vs. stellar evolution and metallicity in SDSS/APOGEE.

• **Conclusions:** Implications. Future directions: GAIA, WEAVE.

- Case B mass transfer rate \Rightarrow CE events, stellar mergers (LRNe), birth rate of short P systems? [Tylenda+ 13, Kochanek+ 14].
- More close binaries at low $[Fe/H] \Leftrightarrow SF$ theory [Machida+ 09, Bate 14].
- What about BPS models in different environments, redshift evolution? [de Mink & Belczynski 15]?
- Planet host metallicities \Rightarrow habitability [Johnson 10, Howard+ 12, Thompson+ 17].

V1309 Sco [Tylenda+ 13]

Case B mass transfer rate ⇒
 CE events, stellar mergers
 (LRNe), birth rate of short P
 systems? [Tylenda+ 13,
 Kochanek+ 14].

- More close binaries at low
 [Fe/H] ⇔ SF theory [Machida+
 09, Bate 14].
- What about BPS models in different environments, redshift evolution? [de Mink & Belczynski 15]?
- Planet host metallicities ⇒
 habitability [Johnson 10, Howard+
 12, Thompson+ 17].

Carles Badenes IAC 2/5/18

Case B mass transfer rate ⇒
 CE events, stellar mergers
 (LRNe), birth rate of short P
 systems? [Tylenda+ 13,
 Kochanek+ 14].

More close binaries at low
[Fe/H] ⇔ SF theory [Machida+
09, Bate 14].

• What about BPS models in different environments, redshift evolution? [de Mink & Belczynski 15]?

Planet host metallicities ⇒
 habitability [Johnson 10, Howard+
 12, Thompson+ 17].

Machida+ 09

- Case B mass transfer rate ⇒
 CE events, stellar mergers
 (LRNe), birth rate of short P
 systems? [Tylenda+ 13,
 Kochanek+ 14].
- More close binaries at low
 [Fe/H] ⇔ SF theory [Machida+
 09, Bate 14].
- What about BPS models in different environments, redshift evolution? [de Mink & Belczynski 15]?
- Planet host metallicities ⇒
 habitability [Johnson 10, Howard+
 12, Thompson+ 17].

Andrews & Martini 13

Case B mass transfer rate ⇒
 CE events, stellar mergers
 (LRNe), birth rate of short P
 systems? [Tylenda+ 13,
 Kochanek+ 14].

More close binaries at low
[Fe/H] ⇔ SF theory [Machida+
09, Bate 14].

• What about BPS models in different environments, redshift evolution? [de Mink & Belczynski 15]?

Planet host metallicities ⇒
 habitability [Johnson 10, Howard+
 12, Thompson+ 17].

Follow Up

GAIA DR2

	# sources in Gaia DR2	# sources in Gaia DR1
Total number of sources	> 1,500,000,000	1,142,679,769
Number of 5-parameter sources	> 1,300,000,000	2,057,050
Number of 2-parameter sources	> 200,000,000	1,140,622,719
Sources with mean G magnitude	> 1,500,000,000	1,142,679,769
Sources with three-band photometry (G, G_{BP} , G_{RP})	> 1,100,000,000	-
Sources with radial velocities	> 6,000,000	<u>, – .</u>
Lightcurves for variable sources	> 500,000	3,194
Known asteroids with epoch data	> 13,000	-
Additional astrophysical parameters	> 150,000,000	_

GAIA

GAIA

GAIA

WEAVE

WEAVE

WEAVE

arXiv:1711.00660v1 [astro-ph.SR] 2 Nov 2017

STELLAR MULTIPLICITY MEETS STELLAR EVOLUTION AND METALLICITY: THE APOGEE VIEW

CARLES BADENES^{1,2}, CHRISTINE MAZZOLA¹, TODD A. THOMPSON³, KEVIN COVEY⁴, PETER E. FREEMAN⁵, MATTHEW G. WALKER⁶, MAXWELL MOE^{7,8}, NICHOLAS TROUP⁹, DAVID NIDEVER¹⁰, CARLOS ALLENDE PRIETO¹¹, BRETT ANDREWS¹, RODOLFO H. BARBÁ¹², TIMOTHY C. BEERS¹³, JO BOVY^{14,15}, JOLEEN K. CARLBERG¹⁶ NATHAN DE LEE^{17,18}, JENNIFER JOHNSON³, HANNAH LEWIS⁹, STEVEN R. MAJEWSKI⁹, MARC PINSONNEAULT³, JENNIFER SOBECK¹⁹, KEIVAN G. STASSUN¹⁸, GAIL ZASOWSKI²⁰

Draft version November 3, 2017

ABSTRACT

We use the multi-epoch radial velocities acquired by the APOGEE survey to perform a large scale statistical study of stellar multiplicity for field stars in the Milky Way, spanning the evolutionary phases between the main sequence and the red clump. We show that the distribution of maximum radial velocity shifts (ΔRV_{max}) for APOGEE targets is a strong function of log(g), with main sequence stars showing ΔRV_{max} as high as ~300 km s⁻¹, and steadily dropping down to ~30 km s⁻¹ for log(g)~0, as stars climb up the Red Giant Branch (RGB). Red clump stars show a distribution of ΔRV_{max} values comparable to that of stars at the tip of the RGB, implying they have similar multiplicity characteristics. The observed attrition of high ΔRV_{max} systems in the RGB is consistent with a lognormal period distribution in the main sequence and a multiplicity fraction of 0.35, which is truncated at an increasing period as stars become physically larger and undergo Case B mass transfer after Roche Lobe Overflow. The ΔRV_{max} distributions also show that the multiplicity characteristics of field stars are metallicity dependent, with metal-poor ([Fe/H] $\lesssim -0.5$) stars having a multiplicity fraction of or the formation rates of interacting binaries observed by astronomical transient surveys and gravitational wave detectors, as well as the habitability of circumbinary planets.

• APOGEE: high resolution, multi-epoch IR spectra of ~100,000 stars (Galactic archeology).

• Unique view of stellar multiplicity, from the MS to the RC. Fewerpoch spectra: no orbits $\Rightarrow \Delta RV_{max}$.

• Attrition of high ΔRV_{max} (short P) systems as stars climb the RGB, consistent with lognormal P dist., truncated at P_{crit} \Rightarrow Case B mass transfer. $\Delta RVmax$ in RC stars ~ TRGB.

• Clear trend with [Fe/H]: lower [Fe/H] stars have higher ΔRV_{max} distributions \Rightarrow consistent with higher f_m at lower [Fe/H] [Gao+ 14, 17, but Hettinger+ 15].

• Future work: Hierarchical Bayesian models, multiplicity statistics w/ age & Galactic location, BPS, follow-up of interesting systems.

Additional Plots

Additional Plots

Carles Badenes IAC 2/5/18

