The Persistence of Memory: What Supernova Remnants Can Tell Us about Type Ia Supernova Progenitors

Carles Badenes University of Pittsburgh Harvard CfA Colloquium February 19, 2015

with **Hiroya Yamaguchi** (NASA/UMd), **Dan Patnaude** (CfA), **Eduardo Bravo** (UPC), **Pat Slane** (CfA), **Sangwook Park** (UTA), and others

Artistic Motivation

Carles Badenes CfA 02/19/15

Scientific Motivation

Carles Badenes CfA 02/19/15

SN la progenitors remain unidentified

Supernova Remnants (SNRs) ⇒ different perspective on SNe

SNRs remember their birth events.

- **SN-CSM Interaction:** progenitor stellar evolution.
- Stable Fe-peak elements: progenitor mass.

Introduction: SN Ia Progenitors

Supernova Types

SNe are rare optical transients (t ~ months) with peak magnitudes that rival their host galaxies

- **Types** (optical spectra):
 - Type I: no H (Ia: Si, Ib: He, Ic: neither).
 - Type II: Strong H.
- Core collapse SNe (II, Ib, Ic): massive stars ($M \ge 8M_{\odot}$), several progenitors identified.
- Thermonuclear SNe (Ia).

No SN la progenitors detected so far. Best constraints: preexplosion *HST* images of nearby SNe. Progenitors must be:

- Small: early light curve of SN2011fe requires R < 0.02 $R_{\odot} \Rightarrow C/O WD$ [Nugent + 11, Bloom+ 12].
- Faint: SN2011fe limits rule out some accreting WDs, most RGs, and MS stars larger than ~4 M_o [Li+ 11, Kelly+ 14].
- **H-poor:** ≤0.01 M_☉ [Leonard 07, Lundqvist+15].

SN Ia: What We Know

Carles Badenes CfA 02/19/15

No SN la progenitors detected so far. Best constraints: preexplosion *HST* images of nearby SNe. Progenitors must be:

- Small: early light curve of SN2011fe requires R < 0.02 $R_{\odot} \Rightarrow C/O WD$ [Nugent+ 11, Bloom+ 12].
- Faint: SN2011fe limits rule out some accreting WDs, most RGs, and MS stars larger than ~4 M_o [Li+ 11, Kelly+ 14].
- **H-poor:** $\leq 0.01 \text{ M}_{\odot}$ [Leonard 07, Lundqvist+15].

No SN la progenitors detected so far. Best constraints: preexplosion *HST* images of nearby SNe. Progenitors must be:

- Small: early light curve of SN2011fe requires R < 0.02 $R_{\odot} \Rightarrow C/O WD$ [Nugent + 11, Bloom+ 12].
- Faint: SN2011fe limits rule out some accreting WDs, most RGs, and MS stars larger than ~4 M_o [Li+ 11, Kelly+ 14].
- **H-poor:** $\leq 0.01 \text{ M}_{\odot}$ [Leonard 07, Lundqvist+15].

Carles Badenes CfA 02/19/15

SN Ia: What We Know

Carles Badenes CfA 02/19/15

SN la are thermonuclear explosions of C+O white dwarfs prompted by accretion in a binary system

- Fundamentals are well understood: no H in spectra, energy budget, light curve decay.
- Key details remain obscure: explosion mechanism, progenitor systems.
- Strikingly uniform events \Rightarrow LC width / luminosity relation (⁵⁶Ni mass) \Rightarrow Cosmology.

REVIEWS: Branch & Khokhlov 95; Hillebrandt & Niemeyer 00, Maoz+ 14

Single vs. Double Degenerate SN Ia

Carles Badenes CfA 02/19/15

Single Degenerate (SD):

- WD+non-degenerate star.
- Slow accretion \Rightarrow mass growth \Rightarrow explosion near M_{Ch} [Hachisu+ 96].
- Some CSM expected (accretion cannot be 100% efficient) [Han & Podsiadlowski 04].

Double Degenerate (DD):

- WD+WD.
- GW emission ⇒ merging/collision ⇒ explosion, not necessarily near M_{Ch} [lben & Tutukov 84, Webbink 84, Sim+ 10, van Kerkwijk+ 10].
- Not much CSM expected.

Clues to SN Ia Progenitors

Carles Badenes CfA 02/19/15

 Surviving companion searches in SNRs ⇒ Upper limits or ambiguous results [Ruiz-Lapuente+ 04, Kerzendorf+ 09, Schaefer & Pagnotta 12, Gonzalez-Hernandez+ 12] ⇒ DD.

 SN la delay time distribution (DTD) behaves
 like 1/t and has power at ~10
 Gyr [Maoz & Mannucci 11, Maoz+ 14] ⇒ DD.

WD+WD merger rate ~ SN
 Ia rate in the Milky Way; most
 mergers are sub-Ch [Badenes &
 Maoz 12] ⇒ DD.

SNR 0509-67.5

Schaefer & Pagnotta 12

Clues to SN la Progenitors

Carles Badenes CfA 02/19/15

 Surviving companion searches in SNRs ⇒ Upper limits or ambiguous results [Ruiz-Lapuente+ 04, Kerzendorf+ 09, Schaefer & Pagnotta 12, Gonzalez-Hernandez+ 12] ⇒ DD.

 SN la delay time distribution (DTD) behaves
 like 1/t and has power at ~10
 Gyr [Maoz & Badenes 10, Maoz &
 Mannucci 11, Maoz+ 14] ⇒ DD.

WD+WD merger rate ~ SN
 Ia rate in the Milky Way; most
 mergers are sub-Ch [Badenes &
 Maoz 12] ⇒ DD.

Clues to SN Ia Progenitors

Carles Badenes CfA 02/19/15

 Surviving companion searches in SNRs ⇒ Upper limits or ambiguous results [Ruiz-Lapuente+ 04, Kerzendorf+ 09, Schaefer & Pagnotta 12, Gonzalez-Hernandez+ 12] ⇒ DD.

 SN la delay time distribution (DTD) behaves
 like 1/t and has power at ~10
 Gyr [Maoz & Badenes 10, Maoz &
 Mannucci 11, Maoz+ 14] ⇒ DD.

WD+WD merger rate ~ SN
 Ia rate in the Milky Way; most
 mergers are sub-Ch [Badenes &
 Maoz 12] ⇒ DD.

Clues to SN la Progenitors

Carles Badenes CfA 02/19/15

 Blueshifted variable absorption in SN Ia [Patat+ 07, Sternberg + 11, Dilday + 12] ⇒ SD? DD? [Moore & Bildsten 12, Soker+ 13, Raskin & Kasen 13].

• **Distribution of M**_{ei} \Rightarrow both M_{Ch} and sub-Ch [Scalzo+ 14] \Rightarrow mixture?

CSM Interaction in Type Ia SNRs

CSM Interaction in SN Ia

Carles Badenes CfA 02/19/15

Most SN Ia show **no signs of dynamical interaction with CSM** ⇒ small dM/dt from progenitor.

• Early times (~1 d): no extended envelope or accretion disk in optical light curves [Hayden+ 10; Bianco+ 11].

• Intermediate times (~10 d): no radio or X-ray detections \Rightarrow (dM/dt)/v < 10⁻⁹ M_o yr⁻¹ (100 km s⁻¹)⁻¹ [Chomiuk+ 12, Margutti+ 12, Perez-Torres+ 14].

• Late times (~500 yr): (Most) Type Ia SNRs consistent with a uniform ISM [Badenes+ 06, 07, 08a].

- SNRs \Rightarrow spatial (and temporal) scales relevant for stellar evolution of SN progenitors (t $\leq T_{KH}$).
- Can only probe dynamical interaction: CSM that can slow down SN ejecta.

CSM Interaction in SNRs

Carles Badenes CfA 02/19/15

Silicon

n_t 5x10⁹ to

10¹² cm⁻³ s

• X-ray spectra \Rightarrow AM density constraints. NEI plasma: ionization timescale (n_t) [Badenes+ 07].

• High $n_t \Rightarrow$ high centroid energy and line flux.

 10^{4}

10³

CSM Interaction in SNRs: Fe K

Carles Badenes CfA 02/19/15

- Use Fe Kα line blend at ~6.5 keV as an AM density diagnostic.
- Most SNe (Ia and CC) eject some Fe ⇒ innermost layers.
- Large $n_e t$ required to fully ionize Fe \Rightarrow large dynamic range in ρ_{AM} .
- Need high effective area at 6.5 keV: Suzaku.
- Details: Yamaguchi,
 CB+ 14b

• 24 SNRs (22 Suzaku, +1 Chandra [Borkowski+ 13], +1 XMM [Maggi+ in prep.]).

• Scatter plot?

Carles Badenes CfA 02/19/15

Fe K Emission in SNRs

24 SNRs (22 Suzaku, +1 Chandra [Borkowski+ 13], +1 XMM [Maggi+ in prep.]).

Fe K Emission in SNRs

 Account for dynamically old/young SNRs ⇒
 bimodal distribution in FeK centroid/luminosity.

Carles Badenes CfA 02/19/15

• **24 SNRs** (22 *Suzaku*, +1 *Chandra* [Borkowski+ 13], +1 *XMM* [Maggi+ in prep.]).

 Account for dynamically old/young SNRs ⇒
 bimodal distribution in FeK centroid/luminosity.

Ia/CC SNRs ⇔ Iow/high FeK centroids.

Fe K Emission in SNRs

Fe K Emission in SNRs

- 24 SNRs (22 Suzaku,
 +1 Chandra [Borkowski+ 13],
 +1 XMM [Maggi+ in prep.]).
- Account for dynamically old/young SNRs ⇒
 bimodal distribution in FeK centroid/luminosity.
- Ia/CC SNRs ⇔
 Iow/high FeK centroids.
- CSM interaction!
- New method to classify SNRs + quantify CSM interaction.

Type Ia SNR Models

Carles Badenes CfA 02/19/15

• Type Ia SNR models: M_{Ch} ejecta + uniform AM evolved to 5000 yr [Badenes+ 03,05,06,08a].

DDT ejecta models
 (dim, normal, bright
 SN Ia) ⇒ crude (but
 effective) diagnostic
 of SN Ia brightness!

Also PDD models
 ⇒ more compact
 ejecta.

Models vs. Data

Carles Badenes CfA 02/19/15

• Uniform AM, M_{Ch} ejecta can explain (most) la SNRs.

N103B requires
 PDD model, maybe
 CSM interaction
 [Williams+ 14].

• Evaluate stellar evolution + explosion with SNR observations.

 Models are required to interpret these data.

What is going on?

Carles Badenes CfA 02/19/15

• Different dynamics for CC and Ia SNRs: several M_o of CSM vs. much less, maybe none ⇒ later transition to Sedov.

What is going on?

 Different dynamics for CC and Ia SNRs: several M_o of CSM vs. much less, maybe none ⇒ later transition to Sedov.

• Kepler, N103B might have some CSM [Patnaude+ 12, Burkey+ 12, Chiotellis+ 12, Williams+ 14].

• RCW 86 (and possibly G344.7-0.1) are cavity explosions [Badenes+ 07, Williams+ 11, Broersen+ 14].

Carles Badenes CfA 02/19/15

A Step Back

• SN Ia AM density estimates from radio/X-ray SNe (~10d, ~0.01 pc) and SNRs (~500 yr, ~several pc) are consistent with the warm phase of the ISM [Chomiuk+12 Perez-Torres+ 14, Raymond+ 07, Slane+ 14, Borkowski+ 14]. Mild CSM interaction is allowed, probably also small (~0.5 pc) cavities around the progenitor.

Steps Forward

• Expand the model grid for Type Ia SNRs: CSM interaction, sub-Chandra explosions (Matt Schell's thesis).

• Improve the model physics: CR-modified dynamics [Lee+ 14].

• CC SNR models.

Evaluate SN and progenitor models at the same time [Patnaude+15].

 Astro-H scheduled for launch in 2015 ⇒ Revolution in X-ray observations of SNRs.

Carles Badenes CfA 02/19/15

• Expand the model grid for Type Ia SNRs: CSM interaction, sub-Chandra explosions (Matt Schell's thesis).

Steps Forward

• Improve the model physics: CR-modified dynamics [Lee+ 14].

• CC SNR models.

Evaluate SN and progenitor models at the same time [Patnaude+15].

 Astro-H scheduled for launch in 2016 ⇒ Revolution in X-ray observations of SNRs.

Secondary Fe-peak Elements in Type Ia SNRs

Carles Badenes CfA 02/19/15

• Standard models: M_{ch} DDT explosions [Khokhlov 91]. One parameter (ρ_{tr}) \Rightarrow ⁵⁶Ni yield (SN Ia brightness).

- Burning regimes: Exp. O burning, exp. Si burning, NSE, n-NSE.
- Sub-Ch explosions also viable [Sim+ 10]. One parameter $(M_{WD}) \Rightarrow$ ⁵⁶Ni yield.
- Sub-Ch models do not reach
 n-NSE ⇒ smaller yield of
 neutronized species (Mn, Ni).

Carles Badenes CfA 02/19/15

• Standard models: M_{ch} DDT explosions [Khokhlov 91]. One parameter (ρ_{tr}) \Rightarrow ⁵⁶Ni yield (SN Ia brightness).

- Burning regimes: Exp. O burning, exp. Si burning, NSE, n-NSE.
- Sub-Ch explosions also viable [Sim+ 10]. One parameter $(M_{WD}) \Rightarrow$ ⁵⁶Ni yield.
- Sub-Ch models do not reach
 n-NSE ⇒ smaller yield of
 neutronized species (Mn, Ni).

 Yield of neutronized species: n-NSE + progenitor metallicity (14N 9 10⁻² МИ/Е from CNO becomes ²²Ne) [Timmes+ 03, Badenes+ 08b]. • Diagnostic mass ratios: M_{Ni}/M_{Fe} and $M_{Mn}/M_{Fe} \Rightarrow$ 10^{-3} discriminate Ch and Sub- 10^{-2} 10^{-1} Ch explosions! Ni/Fe M_{Ch} DDT ρ_{DDT} [g cm⁻³] 3.9 x 10⁷ Mn and Ni are hard to 2.6×10^7 observe in the optical 1.3×10^7 🛨 1.0 x 10⁷ [Maeda+ 10, Seitenzahl+ 13].

Carles Badenes CfA 02/19/15

 Yield of neutronized species: n-NSE + progenitor metallicity (¹⁴N from CNO becomes ²²Ne)
 [Timmes+ 03, Badenes+ 08b].

• Diagnostic mass ratios: M_{Ni}/M_{Fe} and $M_{Mn}/M_{Fe} \Rightarrow$ discriminate Ch and Sub-Ch explosions!

• Mn and Ni are hard to observe in the optical [Maeda+ 10, Seitenzahl+ 13].

Carles Badenes CfA 02/19/15

• *Suzaku* can detect Cr, Mn, and Ni lines in SNRs: Tycho, Kepler, ... [Tamagawa+ 08, Park+ 13, Yang+ 13].

In young objects, RS has not reached n-NSE

region \Rightarrow progenitor metallicity [Badenes+ 08b, Park+ 13].

Carles Badenes CfA 02/19/15

• *Suzaku* can detect Cr, Mn, and Ni lines in SNRs: Tycho, Kepler, ... [Tamagawa+ 08, Park+ 13,Yang+ 13].

In young objects,
 RS has not
 reached n-NSE

region \Rightarrow progenitor metallicity [Badenes+ 08b, Park+ 13].

Need an evolved
 SNR with lots of Fe
 ⇒SNR 3C397!

SNR 3C397

- 3C397 is an evolved Galactic SNR at D~10 kpc [Safi-Harb+ 05].
- Consistent dynamical model (IR+X-ray) ⇒ RS has thermalized all the SN ejecta.
- Extraordinary X-ray spectrum! Very strong Ni and Mn emission.

SNR 3C397

 Model line emission with updated atomic data (AtomDB, Foster+) ⇒
 M_{Ni}/M_{Fe}~0.2; M_{Mn}/M_{Fe}~0.03.

- Sub-Ch models do not work, or require unreasonable progenitor metallicities (>5Z_☉).
- M_{Ni}/M_{Fe} and M_{Mn}/M_{Fe} require n-NSE material \Rightarrow Chandrasekhar-mass progenitor.
- Details: Yamaguchi, CB + 15 [arXiv:1502:04255]

Carles Badenes CfA 02/19/15

Model line emission with updated atomic data (AtomDB, Foster+) ⇒ M_{Ni}/M_{Fe}~0.2; M_{Mn}/M_{Fe}~0.03.

SNR 3C397

- Sub-Ch models do not work, or require unreasonable progenitor metallicities (>5Z_o).
- M_{Ni}/M_{Fe} and M_{Mn}/M_{Fe} require n-NSE material \Rightarrow Chandrasekhar-mass progenitor.
- Details: Yamaguchi, CB + 15 [arXiv:1502:04255]

Carles Badenes CfA 02/19/15

Summary

 Fe K line ⇒ CC/la SNRs + quantitative test for progenitor evolution scenarios (CSM).

• Dynamically, most la SNRs are compatible with little or no CSM. $\sim M_{Ch}$, uniform AM models work really well \Rightarrow DD?

• RCW 86 (and maybe G344.7-0.1) require fast, continuous pre-SN outflows \Rightarrow SD?

• SNR 3C397 shows prominent Mn and Ni emission \Rightarrow M_{Ch} progenitor \Rightarrow SD.

• Other measurements show a preference for DD scenario (no companions, DTD, merger rate).

SN Ia in star-forming galaxies probably come from a mixture of SD and DD progenitors

Summary

Carles Badenes CfA 02/19/15

SN Ia in star-forming galaxies probably come from a mixture of SD and DD progenitors

Type Ia SNRs and cavities

Carles Badenes CfA 02/19/15

• Radii and n_et of Type Ia SNRs with known ages are consistent with uniform ambient medium interaction [Badenes+ 07].

 'Accretion winds' in SD progenitor models [Hachisu+ 96] excavate large cavities [Koo & McKee 92] that lead to large SNR radii and low n_t.

More on RCW 86

Carles Badenes CfA 02/19/15

• **RCW 86** is large (~25 pc), with well defined borders, low n_et, bright Fe, and no compact remnant [Williams+ 11].

• IF SNR of SN 185 AD ⇒ cavity explosion [Vink+ 97].

 IF la SNR ⇒ fast, sustained outflow
 from the progenitor ⇒
 SD [Badenes+ 07,
 Williams +11].

• A light echo or detailed HD+NEI models would be very nice!

Other cavity Ia SNRs?

Carles Badenes CfA 02/19/15

• **RCW 86** might not be the only example of Type Ia SN in a cavity.

• **DEM L238** and **DEM L249**, two middle-aged SNRs in the LMC have Ferich spectra and low n_et.

• IF Type Ia SNRs, they might also be cavity explosions [Borkowski+ 06].

• **Beware:** typing SNRs older than a few thousand years is difficult, and so is modeling their dynamic evolution!

CSM in CC SNRs

Carles Badenes CfA 02/19/15

 In more evolved SNRs like
 G292.0+1.8, forward
 shock morphology
 can constrain ejecta
 and CSM density
 profiles ⇒ CC SN
 progenitor [Lee+ 10].

• Kepler is unique among Type la SNRs in that it shows clear signs of a non-uniform AM in the NW: brighter X-ray emission, larger n_et, lower expansion parameters, optical N-rich emission [Blair+ 91, Reynolds+ 07, Vink 08].

• Well above Galactic plane \Rightarrow **CSM from a mass-losing progenitor**. A popular model posits a large relative motion wrt to the local ISM \Rightarrow **bow shock structure overrun by SN ejecta** [Bandiera 87, Borkowski+ 92, 94].

Carles Badenes

Garching

CSM Interaction: Kepler SNR

 Morphology (radius and N/S asymmetry) and kinematics (expansion parameters) can be reproduced by a symbiotic model (AGB wind ~ 20 km/s, moving at 250 km/s wrt ISM) [Chiotellis+ 12].

However, this requires a subenergetic
 SN explosion (E~2x10⁵⁰ erg).

Fig. 4. The evolution of the wind bubble of model A. The snapshots from left to right correspond to the times 0.10 Myr, 0.29 Myr, 0.38 Myr and 0.57 Myr.

Fig. 5. SNR evolution of model A. The snapshots from left to right correspond to the times 158 yr, 285 yr, 349 yr and 412 yr.

Garching

CSM Interaction: Kepler SNR

 HD+NEI models in the S, where the ejecta should be interacting with the pristine CSM from the progenitor ⇒ constrain both M_{56Ni} and pre-SN dM/dt

[Patnaude+ 12].

Garching

49

CSM Interaction: Kepler SNR

- HD+NEI models rule out a standard $\rho \propto r^2 CSM!$ (allowed by HD [Chiotellis+ 12]).
- Small cavity + wind works [Wood-Vasey & Sokoloski 06], but so does a uniform AM.
- In any case, Kepler must have been a bright SN Ia ($M_{56Ni} \sim 1 M_{\odot}$).

Carles Badenes